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An Introduction to complexity science and its implications for primary care practice and research

NAPCRG Pre-Conference Workshop

Saturday, October 20, 2007
Welcome by Chair

Start 8.30am

What is Complexity Science and Why Should I Care? 

Mike Parchman (40 minutes plus 15 minutes for discussion)

Uncertainty in health care policy and research

Sholom Glouberman (40 minutes plus 20 minutes for discussion)

Break 10.30 – 10.45am
Qualitative research and Complexity – lessons from Primary Care
Ben Crabtree (40 minutes plus 15 minutes for discussion)

Using quantitative methods to study complex systems David Katerndahl (40 plus 15 minutes for discussion )

Lunch 12.20 -1.00 pm

Implications of Complex Adaptive Systems Theory for Research Design 

Reuben McDaniel Jr (40 minutes plus 20 minutes for discussion)

Reframing clinical and research questions using complexity science principles with selected examples.  

Panel discussion on approaches that reframe clinical and research questions 

· Modeling and Influence diagrams – Joachim Sturmberg

· The patient as a complex system –Frances Griffiths

· Research and knowledge synthesis for complex systems – Carmel Martin

· Practice organizations – William Miller

(40 plus 20 minutes for discussion)

Small groups for participants to discuss their clinical and research questions on different topics of interest with expert leaders (≤ 6 according to participation). 
 (30 minutes)

Small groups cont. (1 hour)

 (60 minutes) 
Break for 15 minutes 

Closing statements from invited experts

(30 minutes)

Wrap up Chair Close 

(15 minutes)

Speakers

Reuben R. McDaniel, Jr.

Department of Information, Risk and Operations Management (IROM) B6500

McCombs School of Business

The University of Texas at Austin, Austin, TX 78712

VOICE: 512-471-9451; FAX: 512-471-0587; e-mail: reuben.mcdaniel@mccombs.utexas.edu

Reuben R. McDaniel, Jr. holds the Charles and Elizabeth Prothro Regents Chair in Health Care Management in the McCombs School of Business at The University of Texas at Austin and  teaches courses in Managing Complexity and, Information and Knowledge Management.  His research interest is in management of health care organizations as complex adaptive systems. He has published in The Academy of Management Journal, Management Science,  Organizational Behavior and Human Decision Processes, The Gerontologist, The Journal of Family Practice,  Health Care Management Review,  and Health Services Research.

Sholom Glouberman

Philosopher in Residence at Baycrest Centre for Geriatric Care, Associate Scientist at the Kunin-Lunenfeld Applied Research Unit and Adjunct Professor at McGill University & University of Toronto, and Fellow of the Change Foundation.

http://www.healthandeverything.org/
Sholom Glouberman, BA McGill, Ph.D. in Philosophy Cornell University,
has applied philosophical methods and conceptual analysis to organizations and systems for 25 years. Recently, he has focused increasingly on the notoriously intractable area of health and health care. Sholom has edited Beyond Restructuring, a collection of papers from a King’s Fund and wrote Keepers, a study of workers in total institutions. He has collaborated with Henry Mintzberg on papers describing the structure and dynamics of health care systems and organizations. Towards a New Perspective on Health Policy traces the trajectory of health policy from its beginnings into the next 25 years. His was a lead policy effort for the Romanow Commission. Recent projects include: development of the International Masters Program for Health Leadership at McGill University, the establishment of the Clinamen Collaboration, a mixed group of writers on health and complexity, work on Reconnecting to Care a project at Baycrest to bring care of patients back to basics.
Primary Care Complexity Experts

Benjamin F. Crabtree, PhD, a medical anthropologist, is Professor and Director of Research, Department of Family Medicine, UMDNJ-Robert Wood Johnson Medical School.  Dr. Crabtree has contributed more than 100 peer-reviewed manuscripts and is known for expertise in qualitative research.  He has co-edited two books, Doing Qualitative Research, now in its 2nd Edition, and Exploring Collaborative Research in Primary Care.  He has been principal investigator on major grants from AHRQ, the Robert Wood Johnson Foundation, NHLBI, and NCI that have explored complexity science concepts in primary care practice settings. 
Frances Griffiths is Associate Clinical Professor (Reader) at Warwick Medical School, University of Warwick. Her research training is Sociology led her to an interest in complexity. Through convening a series of exploratory workshops on complexity and primary care in the UK, she co-edited a book on 'Complexity and healthcare'. Frances is currently a UK, Department of Health Career Scientist and is developing research on complexity and healthcare. She is engaged with disciplines including mathematics, engineering and biological sciences as well as drawing on social sciences in her exploration of complexity in relation to health and is co-applicant on a number of funded interdisciplinary research projects on complexity.

David M. Katerndahl, M.D. is Professor and former Director of Research in the Department of Family and Community Medicine of the University of Texas Health Science Center, San Antonio. His research interests include areas of panic disorder, depression, and complexity science. He more than 150 publications, including a recently-published book Directing Research In Primary Care.  In complexity science, Dr. Katerndahl has published two articles on the dynamics of mood and presented 10 papers and workshops.  He is currently concluding a study of the dynamics of domestic violence supported by the National Science Foundation.
Carmel M Martin, MBBS PhD Australia. completed her GP training in the UK, worked as a General Practitioner in Central London and undertook Community Medicine training, with a MSc, University of London. She has been involved in Health Systems Reforms in the UK, Australia and Canada related to primary health care, chronic care and medication management for over 20 years. Since 2001, she has worked on more than 12 Primary Care and Primary Health Care reform implementation and evaluation projects in Canada. Her PhD, awarded in 1999, was on the Care of Chronic Illness in General Practice. Her research interests are Complexity Theory, Primary Health Care Systems and their evaluation and the implementation of Chronic Disease and Illness Care.
William L. Miller, MD, MA, Chair of the LVH Department of Family Practice, is internationally recognized for his research expertise in the clinical encounter and practice organization, the ecology of chronic illness, as well as multimethod, qualitative, and participatory research methodology. As a family physician and anthropologist, his grounding in family practice is maintained by teaching a new generation of family physicians in the same town where his father and he served the community as private practice family physicians for many years. Dr. Miller provides important philosophical and methodological leadership and innovation internationally.

Michael Parchman, Associate Professor, MD, MPH: University of Texas Southwestern Medical School; Mike’s key interests are in the primary care clinical micro-system as a complex adaptive system, type 2 diabetes, and practice-based research network development and methodologies. He was awarded the best research paper award, Honorary Mention, Society of Teachers in Family Medicine for Continuity of care, self-management behaviors, and glucose control in patients with type 2 diabetes;. He received Distinguished Paper Selection, NAPCRG for Continuity of care, stages of change for self-care behaviors and glucose control among patients with type 2 diabetes.  He is a member, Editorial Board; Health Care Research and Management and a Member of Veteran Affairs National Scientific Review Board

Joachim P Sturmberg, Honorary Associate Professor of General Practice, Monash University, Victoria, Conjoint Associate Professor of General Practice, University of Newcastle, New South Wales, Australia, Member, National Standing Committee of Education, National Coordinator, AKT-segment, Board of Examiners, Royal Australian College of General Practitioners and General Practitioner in private group practice. He has recently written The Foundations of Primary Care with a contribution by Carmel Martin; a book that takes a whole systems approach to primary care, incorporating new developments, social aspects, critical discourse, international perspectives, and the history and philosophy of medicine.

Objectives: By the conclusion of this workshop, participants should be able to:
1. Identify and define the basic concepts and principles of complexity science and theory; 

2. Reframe their clinical and research questions using complexity science principles; and 
3. Establish a network of colleagues with interest in and experience with the use of complexity science and theory in their research endeavors. 

Content: Principles and applications of complexity science in Primary Care in relation to clinical and research questions and approaches to answering them.
Method:  Audience participation will take place in 50% of the time of the workshop – 25% of in open discussion with experts and experienced clinical investigators and 25% in small groups where they can discuss their individual issues with experts and experienced clinical investigators

Prerequisite Knowledge: None is required

· Audience: All Primary Care clinicians and researchers who want to learn more about how to apply complexity science principles to their research.  

· Rationale: Primary Care takes place in a complex health care and social environment, yet most of our activities are based on evidence that is derived on the basis of assumptions that we work in simple, linear, mechanistic systems rather than complex environments. There is a growing interest in complexity science, but many practitioners and researchers are confused by what it means and how to apply it in their everyday environments. This workshop will address the audience’s knowledge needs with a balance of didactic and participatory sessions.

· Schedule: see attachment.

· Evaluation: a before and after survey on the day and a 6 weeks post workshop email survey to determine the impact of the workshop on knowledge, attitudes and practice and to stimulate networking. 
· Why a Preconference? This workshop is educational rather than a research presentation. Due to the challenges of changing ones mindset and assumptions, a whole day is needed to introduce the principles and theories of complexity and allow sufficient time to workshop practical examples. It is of general interest and likely to be more accessible to a broader audience if there are no competing research presentations and sessions. The team who will present the workshop would only be available when there are no other competing activities.

· Endorsement: This workshop is endorsed by the Complexity SIG and its Chair.

Complexity Science and Knowledge Management 
Course Syllabus 2004 - 2006 
Session 1 – Introduction to Complex Adaptive Systems

1. Davis, Murray S. (1971). That’s Interesting! Towards a Phenomenology of Sociology and a Sociology of Phenomenology. Phil. Soc. Sci. I, 309-344.

2. Reichl, Linda E. Forthcoming, in Reuben R. McDaniel, Jr. & Dean J. Driebe (Eds.) Uncertainty and Surprise in Complex Systems, Springer-Verlag, Berlin.

3. Lighthill, Sir James, F.R.S. (1986).  The recently recognized failure of predictability in Newtonian dynamics. Proceedings of the Royal Society of London, A 407, 35-50.
4. Kauffman, Stuart (1995).  “The Origins of Life” in At Home in the Universe: The Search for the Laws of Self-organization and Complexity.  Oxford University Press, Oxford, pp. 31-45.
5. McDaniel, Reuben R., Jr. & Driebe, Dean J. (2001). Complexity Science and Health Care Management. Advances in Health Care Management, 2, 11-36.
6. McDaniel, Reuben R., Jr., Jordan, Michelle E., & Fleeman, Bridgette F. (2003).  Surprise, Surprise, Surprise! A Complexity Science View of the Unexpected. Health Care Management Review, 28(3), 266-278.
Session 2 – Complex Adaptive Systems & Knowledge Management


1. Boisot, Max, and Child, John. (1999). Organizations as Adaptive Systems in Complex Environments: The Case of China. Organization Science, 10 (3), 237-252.

2. Miller, William L. et al. (2001). Practice Jazz: Understanding Variation in Family Practices Using Complexity Science. Journal of Family Practice, 50(10), 872-884. 
3. Barret, Frank J. (1998). Creativity and Improvisation in Jazz and Organizations: Implications for Organizational Learning. Organizational Science, 9 (5), 605-622.

4. Cohen, Deborah et al. (2004).  A Practice Change Model for Quality Improvement in Primary Care Practice. Journal of Healthcare Management, 49(3), 155-169.

5. Weick, Karl E. & Sutcliffe, Kathleen M. (2003).  Hospitals as cultures of entrapment: A re-analysis of the Bristol Royal Infirmary.  California Management Review, 45(2) 73-85.

Session 3 – Complex Adaptive Systems & Knowledge Management

1. Anderson, Philip (1999). Complexity Theory and Organization Science. Organization Science, 10 (3), 216-232.

2. McDaniel, Reuben R. (2004). Chaos and Complexity in a Bioterrorism Future. In Blair, John et al (Eds.) Advances in Health Care Management: Bioterrorism, Preparedness, Attack and Response. Elsevier, Oxford, pp. 119-139. 

3. Allen, Peter M., Strathern, Mark & Baldwin James S. Forthcoming, in Reuben R. McDaniel, Jr. & Dean J. Driebe (Eds.) Uncertainty and Surprise in Complex Systems, Springer-Verlag, Berlin.
4. Driebe, Dean J. (1999). The wisdom of uncertainty.  Conceptos, published by Centro de Investigaciones Interdisciplinarias en Ciencias y Humanidades at the Universidad Nacional de Mexico.

5. Davenport, Thomas et al. (1998). Successful Knowledge Management Projects. Sloan Management Review, Winter, 43-57.

Session 4 - Complex Adaptive Systems & Knowledge Management    
1. McDaniel, R.R. (1997). Strategic Leadership: A View From Quantum and Chaos Theories. Health Care Management Review, 22 (1), 21-37. 

2. Anderson, R., and McDaniel, R.R. (1999). RN Participation in Organizational Decision Making and Improvements in Resident Outcomes. Health Care Management Review, 24 (1), 7-16. 

3. Anderson, Ruth A. & McDaniel, Reuben R. Jr. (2000). Managing Health Care Organizations: Where Professionalism Meets Complexity Science. Health Care Management Review, 25 (1), 83-92. 
4. Levinthal, Daniel A., & Warglien, Massimo (1999). Landscape design: Designing for local action in complex worlds. Organization Science, 10 (3), 342-357.

5. Santiago, Elena F., & Sanjuan, Rafael (2003).  Climb every mountain? Science, 302, 2074-2075.

6. Weick, Karl E. (1993). The Collapse of Sense Making in Organizations: The Mann Gulch Disaster. Administrative Science Quarterly, 12 (38), 628-652.

7. Kelleher, Herb (1997).  A Culture of Commitment.  Learder to Leader Spring, 20-24.

Session 5 – Knowledge Management

1. Nonaka, I. (1994). A Dynamic Theory of Organizational Knowledge Creation. Organization Science, 5(1), 14-37.

2. Boisot, M. & Cox, B. (1999). The I-Space: A Framework for Analyzing the Evolution of Social Computing. Technovation, 19, 535-536. 

3. Stenmark, D. (2000-2001). Levering Tacit Organizational Knowledge. Journal of Management Information Systems, 17(3), 9-24.

4. Chu, D., Strand, R., & Fjelland, R. (2003). Theories of complexity:  Common denominators of complex systems.  Complexity, 8(3), 19-30.
5. Rivkin, J.W., & Siggelkow, N. (2002). Organizational sticking points on NK landscapes.  Complexity, 7(5), 31-43.

6. Stacey, R. (2000). The Emergence of Knowledge in Organizations. Emergence; 2(4), 23-39.

Session 6 – Complex Adaptive Systems and Fitness Landscapes
1. Levinthal, Daniel A., & Warglien, Massimo (1999). Landscape design: Designing for local action in complex worlds. Organization Science, 10 (3), 342-357.

2. Santiago, Elena F., & Sanjuan, Rafael (2003).  Climb every mountain? Science, 302, 2074-2075.

3. Chu, D., Strand, R., & Fjelland, R. (2003). Theories of complexity:  Common denominators of complex systems.  Complexity, 8(3), 19-30.
4. Rivkin, J.W., & Siggelkow, N. (2002). Organizational sticking points on NK landscapes.  Complexity, 7(5), 31-43.
Session 7 – Knowledge Management 
1. Nonaka, I. (1994). A Dynamic Theory of Organizational Knowledge Creation. Organization Science, 5(1), 14-37.
2. Boisot, M. & Cox, B. (1999). The I-Space: A Framework for Analyzing the Evolution of Social Computing. Technovation, 19, 535-536. 

3. Stenmark, D. (2000-2001). Leveraging Tacit Organizational Knowledge. Journal of Management Information Systems, 17(3), 9-24.
4. Stacey, R. (2000). The Emergence of Knowledge in Organizations. Emergence; 2(4), 23-39.
Session 8 – Sensemaking

1. Weick, Karl E., & Roberts, Karlene H. (1993). Collective mind in organizations: Heedful interrelating on flight decks. Administrative Science Quarterly, 9 (38), 357-381.
2. Weick, Karl E. (1985). Cosmos vs. chaos: Sense and nonsense in electronic contexts,” Organizational Dynamics, 14, (2), 51-64.
3. Dutton, Jane E. (1997). Strategic agenda building in organizations. In Zur Shapira (Ed.), Organizational Decision Making: Chapter 5, (pp. 81-107). New York, NY: Cambridge University Press.

4. Weick, Karl E. (1993). The Collapse of Sense Making in Organizations: The Mann Gulch Disaster. Administrative Science Quarterly, 12 (38), 628-652.  (this paper was assigned in an earlier session).

Session 9 – Learning
1. Huber, George P. (1991). Organizational Learning: The Contributing Processes and the Literatures. Organization Science, 2 (1), 88-115.

2. Drucker, Peter F. (1999). Knowledge-Worker Productivity: The Biggest Challenge. California Management Review, 41 (2), 79-94. 

3. Seijts, Gerard H. and Latham, Gary P (2005).  Learning versus performance goals: When should each be used? Academy of Management Executive, 19 (1), 124-131.

Session 10 – Learning 

1. Edmondson, Amy C. (1996). Learning from mistakes is easier said than done: Group and organizational influences on the detection and correction of human error. Journal of Applied Behavioral Science, 32 (1), 5-27. 

2. Edmondson, Amy C. (2003).  Speaking up in the operating room: How team leaders promote learning in interdisciplinary action teams. Journal of Management Studies 40(6), 1419-1452.
3. McDaniel, Reuben R., & Walls, Michelle E. (1997). Diversity as a management strategy for organizations: A view through the lenses of chaos and quantum theories. Journal of Management Inquiry; 6 (4), 371-383.
Research Questions:

· How do you distinguish health care organizations that are early adopters?  
· How do organizations develop their agenda for learning?  
· How do you match DSS with the way in which a medical system actually does work?  
Session 11 - Improvisation
1. Watts, Duncan J. (2003). “Innovation, Adaptation, & Recovery” in Six Degrees.  W.W. Norton & Company, New York, New York. pp. 253-289.

2. Crossan, Mary M., White, Roderick, Lane, Henry W., & Klus, Leo (1996). The improvising organization: Where planning meets opportunity. Organizational Dynamics, 2, 20-35.

3. Yanow, D (2001).  Learning in and from improvising: Lessons from theater for organizational learning.  Reflections, 2(4): 58-62.
Research Questions:

1. How can we evaluate the level of improvisational capacity for a clinical microsystem?

2. How do we weigh the desire for a “no variance” system with the desire for a system that can improvise?

3. What kinds of interventions are likely to be both effective and reasonable to improve the improvisational capacity of a clinical microsystem?

Session 13 - Scholarly Inquiry 1: Defining the Problem and Asking the Question

How do we identify a research problem?  What makes any given problem worth solving (except, I just want to know the answer)?  How do I structure problems? How do I ask a question that is scientifically answerable?
· Webb, W. B. (1961). The Choice of the Problem. American Psychologist, 16 (5), 223-227. 

Distinguishes between “successful” research and “valuable” research questions. Identifies six criteria often used to judge a project’s “success” potential: curiosity, confirmability, compassion, cost, cupidity, and conformability. See the last page for additional criteria for “valuable” research.
· Whetten, D. A. (1989). What Constitutes a Theoretical Contribution? Academy of Management Review, 14 (4), 490-495. 
The first section describes the constituent elements of a theory; the second section establishes standards for the theory-development process; and the third section summarizes the expectations of reviewer.
· Davis, M. S. (1971). That’s Interesting! Towards a Phenomenology of Sociology and a Sociology of Phenomenology. Phil. Soc. Sci. I, 309-344. 

We read this piece once before. The first half is an “index of the interesting” It describes various dimensions/examples of what can be interesting “we used to believe x, now we believe y”). You may just want to remind yourself what they are. Part II( p. 327), describes why something is interesting from the point of view of the audience. What audience assumptions may lead them to see a problem as obvious, irrelevant, or absurd?
· Sutton, R. I. & Staw, B. M. (1995). What Theory is Not. Administrative Science Quarterly, 40, 371-385.
References, data, variables, diagrams, and hypotheses are not theory; however, authors routinely use these five elements in lieu of theory. Only the first half of the article is assigned reading.

Additional Readings: 

· Weick, K. E. (2001). Theory Construction as Disciplined Imagination. Academy of Management Review, 14 (4), 516-531. 
Theory construction can be greatly helped at the step where the problem is stated (make assumptions more explicit, make representation more accurate and detailed) See p. 520 for a section on problem statements.
· Arksey, H., & Knight, P. (1999). Interviewing for Social Scientists. Chpt. 4: Designing an Interview-Based Study. Thousand Oaks: Sage. 

Describes criteria for a good research question and ranks and critiques example questions. 

Research Questions:

· How are our research questions affected by the fact that the systems we study are CAS?

· How are our research questions affected by the fact that the systems we study are Clinical Microsystems?

· How do we know we have an empirical question?

· How do you ask scientific questions about Clinical Microsystems? 

· What is the science we are trying to improve through our question?

Session 14 – Scholarly Inquiry 2:  Theory and Models

How do we build a theory?  How do we build a model?  What makes a good theory or a good model?  When and why should we test a theory? 

· Ashbey, W. Ross (1970). Analysis of the System to be Modeled. In Stogdill, R. M. (pp. 94-114). The Process of Model-Building in the Behavioral Sciences. Ohio State University Press. 

This is our second reading of this piece. There is no such thing as the true model of a complex system; all models of a real system are ‘second-rate’. Therefore, why do we make models? How do we select and define variables, find the relation isomorphic with the relation in the real world, test and extend its range of application? 

· Miller, D. C. (1991). Handbook of Research Design and Social Methodology. Newbury Park, CA: Sage Publications. 

· 2.5 The bearing of sociological theory on Empirical research (3 pages)

· 2.6 Bridging the Gap between Languages of Theory and Research (1 page)

· 2.7 Criteria for Judging Usable hypotheses(4 pages)

· 2.11 Role of Models in Research Design (7 pages) 

Researchers must often formulate “middle-range” theories that will link hypotheses to a more inclusive theory. The Last section describes and gives research examples of physical models, theoretical models, mathematical models, mechanical models, and symbolic interactionist model.
· Rhydderch, M., Elwyn, G., Marshall, M., & Grol, R. (2004). Organisational Change Theory and the Use of Indicators in General Practice. Qual Saf Health Care, 13 (21), 213-217.

Compares four organizational theories used to study health care delivery: Systems theory, organizational development, social worlds theory, and complexity theory.
· Guba, Egon G. and Lincoln, Yvonna S. (1994). Competing Paradigms in Qualitative Research. In Denzin, N. K. & Lincoln, Y. S. (Eds.), pp. 105-117, Handbook of Qualitative Research. Thousand Oaks, CA:  Sage Publications. 

Compares four scientific paradigms used to guide qualitative inquiry: positivism, postpositivism, critical theory, and constructivism. Which of these paradigms seem most compatible with complexity theory?

Research Questions: 

· How are our methodologies, tools, and models affected by the fact that the systems we study are CAS?

· How are our methodologies, tools, and models affected by the fact that the systems we study are Clinical Microsystems? 

Session 15 – Scholarly Inquiry 3:  Research Agendas

· Thomas, K. W., & Tymon, W. G. Jr. (1982). Necessary Properties of Relevant Research: Lessons from Recent Criticisms of the Organizational Sciences. Academy of Management Review, 7 (3), 345-352.

Examines five components of research relevance: descriptive relevance, goal relevance, operational validity, nonobviousness, and timeliness 

· Lundberg, Craig C. (1999). Finding Research Agendas: Getting Started Weick-Like. The Industrial –Psychologist, 37(2). 

What are the ways be which scholars initiate significant research? How might a researcher go about discovering research foci that are likely to result in substantial advances in understandings? Selecting a phenomenon, topic, or issue to study is the first step in conceiving/initiating research projects. The first section reviews the conventional advice for getting started in research, the second section outlines and examines the several opening tactics and gambits observable in Weick’s work, the third section notes the themes and beliefs behind Weick’s agenda-finding practices.
· Weick, Karl E. (1992). Agenda Setting in Organizational Behavior: A Theory-focused Approach. Journal of Management Inquiry, 1 (3), pp. 171-182.

· Lawrence, Raul R. (1992) The Challenge of Problem-Oriented Research. Journal of Management inquiry, 1, (2), 139-142. 

The Lawrence and Weick should be read as a set. They take opposite positions on problem-oriented versus theory-oriented research. How might both of these orientations work out in complexity theory?
Research Questions:

· How do you sequence big and little questions? 
Session 16 – Scholarly Inquiry 4:  Designing the Observation 

If we believe the systems we study are CAS, what difference does it make in how we observe the system? What are the basics of research design?  How do we get an elegant design?  How do we effectively use secondary data sources?  What are multiple strategies for direct observation?  What is the appropriate use of surveys?  When, if ever, can we use case study designs?  How do we use simulations for observation?  Does observation require measurement: if not always then when is it okay to not measure or count things? 

· Miller, D. C. (1991). Handbook of Research Design and Social Methodology. Newbury Park, CA: Sage Publications. 

· 2.1 Basic Research Outline Guide for the Design of a Social Research Program – 1 page

· 2.3 The Choice of Research Design (3 page table)

· Janesick, V. J. (1994). The Dance of Qualitative Research Design: Metaphor, methodolatry, and meaning. In Denzin, N. D. & Lincoln, Y. S. (Eds.). Handbook of Qualitative Research (pp. 209-219). Thousand Oaks, CA:  Sage Publications.

The qualitative researcher is very much like an artist at various stages in the design process, in terms off situating and recontexualizing the research project within the shared experience of the researcher and the participants in the study. The paper takes us through the entire research process with lists of checkpoints for each step. 

· Hulley, S., Newman, T., & Cummings, S. (1988). Getting Started: The anatomy and physiology of research. In Hulley, S., & Cummings, S. Clinical Research: An epidemiologic approach, pp. 1 – 11. Baltimore: Williams & Wilkens. 

· Agar, M (2004). We Have Met the Other and We’re All Nonlinear: Ethnography as a nonlinear dynamic system. Complexity, 10, (2), 16 – 24. 

· Anderson, R. A, Crabtree, B. F., Steele, D. J., & McDaniel, R. R. Jr. (2005). Case Study Research: The View from Complexity Science. Qualitative Health Research, 15 (5), 669-685. 

Additional Readings: 
· Flyvbjerg, B. (2001). Making Social Science Matter: Why social inquiry fails and how it can succeed again. London: Cambridge University Press. Chpt. 6, The Power of Example. 

· Schuman, H. & Kalton, G (1985). Survey Methods. In Lindzey, G. & Aronson, E. (Eds). Handbook of Social Psychology: Volume I (pp. 635-697). New York:  Random House.

· Nesbary, Dale K. (2000). Survey Research and the World Wide Web. Needham Hieghts, MA: Allyn & Bacon. Chapter 1: Introducing Survey Research.

· Arksey, H. & Knight, P. (1999). Interviewing for Social Scientists. Chapter 1: Interviews and Research in the Social Sciences. Thousand Oaks, CA:  Sage Publications. 

· Merton, R. M, and Kendall, P. L. (2003). The Focused Interview. In Fielding, Nigel (Ed.). Interviewing, Volume I (pp. 232-260). Thousand Oaks, CA:  Sage Publications.

Session 17 – Scholarly Inquiry 5:  Analyzing the Data

What are the strategies for the analysis of quantitative data?  How do we analyze qualitative data?  What are some limits on our ability to analyze the data in a formal way? What approaches are particularly applicable to studying CAS?

· Evered, R. & Louis, M. R. (1981). Alternative Perspectives in the Organizational Sciences: “Inquiry from the Inside” and “Inquiry from the Outside” 1, 2, 3. Academy of Management Review, 6, (3), 385-395.

“Inquiry from the inside” is characterized by the experiential involvement of the researcher, the absence of a priori analytical categories, and intent to understand a particular situation.  There are a number of different approaches in inquiry, and inherent in each approach are basic values, assumptions, and beliefs about the nature of reality. Does inquiry from inside or inquiry from outside more compatible with beliefs, values, and assumptions of complexity theory?  
· Holt, T. (2004). Complexity and Diabetes. In Holt, T. (ed.), Complexity for Clinicians (pp. 69-82). San Francisco: Radcliffe. 

Non-linear models of blood glucose variation such as Snooker cues might allow the dynamism in the system to be recognized and appreciated as a lever for non-stationary glycemic control. Analysis tools such as Lyapunov exponents and Baysian techniques might help us assess the adequacy of control and influence of self-monitoring from a dynamical perspective, and predict blood glucose levels.
· Heath, R. (2004). Complexity and Mental Health. In Holt, T. (ed.), Complexity for Clinicians (pp. 83-94). San Francisco: Radcliffe.  

This paper discusses the dynamic analysis of disorders in mental health using Complexity indices such as correlation dimension, D2, the maximum Lyapunov exponent, entropy measures, and detrended fluctuation analysis to measure physiological and psychological time series. 
· Agar, M. ((2003, June 30) My Kingdom for a Function: Modeling Misadventures of the Innumerate Journal of Artificial Societies and Social Simulation, 6, (3). Retrieved on June 1, 2003 from http://Jasss.soc.surrey.ac.ut/6/3/8.html 

Agar looks at the problem of translating ethnographic conclusions into simple functions as a means to build an agent-based simulation analyzing drug addiction.
· Gustafson, D., Cats-Baril, W., & Alemi, F. (1992). Systems to Support Health Policy Analysis. Chpt. 8, Forecasting Without Real Data: Bayesian Probability Models, pp. 173-201. Ann Arbor, Michigan: Health Administration Press.

Standard statistical methods are designed for summarizing the evidence from single studies or pooling evidence from similar studies, and have difficulties dealing with the pervading complexity of multiple sources of evidence. Bayesian statistics is an analytical tool that can be used to aggregate the impact of various clues by estimating the relationship between the clue and the forecast. Bayes theorem essentially weights the likelihood from a clinical trial with the relative plausibility defined by the Bayesian analysis.
· Manson, Steven M. Validation and Verification of multi-agent systems. In Janssen, M. A. Complexity and Ecosystem Management (pp. 63-74). Northhampton, MA:  Edward Elgar Publishing.

How to ensure that multi-agent systems are subject to validation procedures commonly accepted for other kinds of modeling techniques. The second half of the paper explores issues of complexity, scale, and emergence. 
Additional Readings: 

· Spiegelhalter, D. J., Abrams, K. R., & Myles, J. P. (2004). Bayesian Approaches to Clinical Trials and Health-Care Evaluation. West Sussex, England:  John Wiley & Sons, Ltd. 

Another stab at the Bayesian statistics.

· Deffuant, G., Huet, S., Bousset, J., Henriot, J., Amon, G., & Weisbuch, G. (2002). Agent-based simulation of organic farming conversion in Allier department. In Janssen, M. A. Complexity and Ecosystem Management (pp. 158-217). Northhampton, MA:  Edward Elgar Publishing.

This is a great example of data collection and analysis in a multi-method design leading to the use of agent-based simulation modeling. Classical innovation diffusion models can be quite limited because they miss the explicit role of the uncertainly in the decision, the importance of the information diffusion and processing. You might just skim the paper and examine the tables, charts, and other models.

Session 18 – Scholarly Inquiry 6:  Interpreting the Results

How can we avoid saying too much or too little?  How do we distinguish between findings and conclusions?  When do we change our theory or model?  How do we express understanding rather than prediction?

· Cilliars, P. (2002). Why We Cannot Know Complex Things Completely. Emergence; 4(1/2), 77-84.

Complexity science cannot and will not lead to a grand science that will solve the outstanding problems of science and philosophy. Rather, the study of CAS is showing us exactly why limited knowledge is unavoidable. The study of complexity is not going to introduce us to a brave new world in which we will be able to control our destiny; it confronts us with the limits of human understanding.
· Bradbury, Roger. Futures, Predictions and Other Foolishness. In Janssen, M. A. Complexity and Ecosystem Management (pp. 48-62). Northhampton, MA:  Edward Elgar Publishing. 
Many people have the mistaken view that the goal of science is prediction but in fact the goal of science is explanation. CAS is an area of science where we can show that prediction is neither realistic nor possible. 
· Gallos, Joan V.  (1996). On Becoming a Scholar: one woman’s journey. In Frost, P.J., & Taylor, M.S. (Eds.), Rhythms of Academic Life, pp. 11-18. Thousand Oaks, CA:  Sage Publications.

· Schneider, B. (1995). Some Propositions about Getting Research Published. In Cummings, L. L. & Frost, P. J. (Eds.), Publishing in the Organizational Sciences (pp. 216-226). Thousand Oaks, CA:  Sage Publications.

Session 19: Creativity

1. Holbrook, Morris B. (1997). Borders, creativity, and the state of the art at leading edge. Journal of Macromarketing. Fall 1997.

2. Langer, Ellen J. (1989). Creative uncertainty.  Book chapter from Mindfulness. Addison-Wesley: Reading, MA. 

3. Plesk, Paul. Visionary Leadership. Health Forum Journal, March/April 1999.

Session 20: Knowing-Doing Gap, Knowledge Networks and Integrating Knowledge Management into the Research of CMS

4. Pfeffer, Jeffrey and Sutton, Robert I.  “Knowing ‘what’ to do is not enough” and “When measurement obstructs good judgment.” Chapters 1 & 5 from The Knowing-Doing Gap: How Smart Companies Turn Knowledge into Action. Harvard Business School Press: Boston, MA; 2000. 

5. Buchanan, Mark. “Small Worlds” in Nexus, pp. 48-60. W.W. Norton & Company, Inc. New York, NY; 2002.

6. Rosenkopf, Lori.  “Managing Dynamic Knowledge Networks.” In George S. Day, Paul J.H. Schoemaker, & Robert E. Gunter (Eds.) Wharton on Managing Emerging Technologies, Chapter 15, p. 337-357. John Wiley & Sons, New York, NY; 2000.

Session 21: Relationships 

Integrating sensemaking, learning, creativity, improvisation, and knowledge management through a focus on relationships. 

1. Tallia AF, Lanham HJ, McDaniel RR Jr, Crabtree BF.  Seven characteristics of successful work relationships in primary care practices. Family Practice Management. 13(1): 47-57  January 2006.

2. March, James G., Sproull, Less S., & Tasmuz, Michal (1991). Learning from samples of one or fewer. Organization Science, 2(1), 1-13.

3. Anderson, Ruth A. et al. (2004). Complexity science and the dynamics of climate and communication: reducing nursing home turnover. The Gerontologist, 44 (3), 378-389.
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· Cromwell JB, Hannan MJ, Labys WC, Terraza M: Multivariate Tests For Time Series Models.  Thousand Oaks:  SAGE Publications, 1994.

· Guastello SJ: Clash of the paradigms.  Psychol Bull 1992; 111:375-9.

· Kaplan D, Glass L (1995) Understanding nonlinear dynamics. New York, New York: Springer-Verlag.

· Knoke D, Kuklinski JH:  Network Analysis.  Beverly Hills:  SAGE Publications, 1982.

· Lewis, M.D., Lamey, A.V., Douglas, L. (1999). New dynamic systems method for the analysis of early socioemotional development. Developmental Science, 2:457-75.
· Morel B, Ramanujam R: Through the looking glass. Organ Sci 1999; 10(3):278-93.

· Pincus SM: Approximate entropy as a measure of irregularity for psychiatric serial metrics.  Bipolar Disord  2006; 8:430-40.

· Rosenstein M, Collins J, De Luca C . Practical method of calculating largest lyapunov exponents from small data sets. Physica D 1993;65:117-134.

· West B:  Where Medicine Went Wrong.  Hackensack, NJ: World Scientific Publishing Company, 2007.

Software

· Analysis

· Dynamics

· Chaos Data Analyzer

· Time Series Analyzer (TISEAN)

· Social Network Analysis - UCINET

· dSEM - AMOS

· Hierarchical Modeling - MLWin

· Vector Autoregression - RATS

· Neural Networks - MATLAB

· Agent-Based Modeling

· Excel, Starlogo, Agentsheets, Ascape, Repast

· www.swarm.org

· www.ccl.sesp.northwestern.edu/netlogo/
Medical Journals That Publish Complexity Papers

· British Medical Journal

· Family Practice

· British Journal Of General Practice

· Annals Of Family Medicine

· Nonlinear Dynamics, Psychology, & Life Sciences

· Complexity And Health Care

Potential Funding Sources

· James S. McDonnell Foundation

· National Science Foundation

· NIH

· PA-02-043 Social And Cultural Dimensions Of Health

· R21

Where To Find Help?

· NAPCRG Complexity Science Group

· NAPCRG Consultants Directory

· New England Complex Systems Institute (www.necsi.org)

· Society For Chaos Theory In psychology And Life Sciences (www.societyforchaostheory.org)

· Meetings

· Plexus (www.PlexusInstitute.com)

· Society For Chaos Theory In Psychology And Life Sciences

Glossary of Nonlinear Terms

Compiled by Terry Marks-Tarlow, Keith Clayton, and Stephen Guastello

The following is a glossary of important concepts in nonlinear dynamics that we believe are the most central and elementary for understanding the field of nonlinear dynamics. Like the other material in this Resources area, it should be regarded as another work in progress. Underlined terms that appear within the glossary entries below appear elsewhere in the glossary. There are several references to figures that appear in the main Resources page as well. For a comprehensive reference resource for these and many other nonlinear concepts, we recommend Allwyn Scott’s Encyclopedia of Nonlinear Dynamics (2005), published by Routledge. 

Agent-based modeling. A computer simulation technique that studies the interactions of a large number of entities known as “agents,” which are units of programming that perceive situations and make decisions, usually of a specific or local nature. The objective is to observe global patterns that emerge from these myriad interactions. See the main Resources page for an example of an agent-based outcome. Also see emergence, self-organization, and cellular automata.
Attractor. An attractor is the end-state of a dynamic system as it moves over time. Once the object or data point goes into the basin of attraction, it does not leave unless a strong force is applied. The set of one or more attractors of a dynamic system can be represented visually or graphically as trajectories in state space, where state space represents the multidimensional, abstract space of all possible system behavior. There are four types of possible attractors: fixed points, limit cycles, toroidal attractors, and chaotic (or strange) attractors. Point attractors are regular, terminating in a single point in state space. Cycle attractors are also regular, sometimes oscillating between two or more fixed points, or exhibiting a sinusoidal pattern over time. Toroidal attractors are semi-regular, representing coupled rhythms whose ratio of periodicities terminates in an irrational rather than a rational number, and appearing in state space as a donut. Chaotic attractors are fully irregular, represented by an aperiodic trajectory in state space that never repeats or settles to a stable pattern, whose basin of attraction is often fractal in shape; see chaos. Regular point and cycle attractors are characteristic of relatively simple systems. Irregular toroidal and chaotic attractors are more characteristic of complex systems.

Autopoiesis. Autopoiesis is the tendency for complex, dynamical systems, especially biological ones, to self-organize so as to maintain cohesion and identity over time. Whether existing at the level of a cell, organ, organism, or group of organisms, all autopoetic systems dissipate energy in order to remain a bounded unity. Autopoietic systems maintain operational closure, which allows them to conserve their internal organization. At the same time, such systems remain structurally coupled to their context. This enables the exchange of matter, information, and energy across open borders, plus the adaptation of such systems to the external environment. 

Basin of attraction. A region in phase space associated with a given attractor. The basin of attraction of an attractor is the set of all (initial) points that go to that attractor.

Bifurcation. A bifurcation is a pattern of instability that often manifests as a sudden, spontaneous change in the attractor pattern of a dynamical system. Within nonlinear states, as control parameters are increased or decreased smoothly, bifurcations often arise abruptly at transition zones in response to tiny changes in a control parameter. Within graphical depictions of state space, bifurcations appear as crossroads in a system’s trajectory, such as the switch from a fixed point to a limit cycle attractor or the progression from order to chaos, whose bifurcation sequence reveals fractal structure. In the reverse situation, where order self-organizes spontaneously out of chaotic bases, complexity builds as bifurcations reduce entropy in local areas.  When applying nonlinear theory to living organisms, bifurcations can be inherent in either discrete state changes that occur within real time or discrete stage changes that occur within developmental time. In the human infant unevenness in the emergence of new capacities means that different bifurcations exist for different developmental functions, such as speech or motor coordination, both within and between individuals. Within the experience-dependent, self-organizing right brain, transitions in development, both towards greater order or the breakdown of previous order, can be graphed as one or more bifurcations in state space. Bifurcations are inherent in all catastrophe models.

Bifurcation diagram. Visual summary of the succession of period-doubling produced as a control parameter is changed. Also see logistic map.

Catastrophe. A catastrophe is a discontinuous change of events, which is produced by a process that involves an underlying continuity. According to catastrophe theory, all discontinuous changes of events can be modeled by one of seven elementary topological models (with qualifications). The models vary in complexity, which is illustrated by the number and type of attractors, order parameters, control parameters, and bifurcations that are involved in the process. Catastrophe models are useful for describing the global changes that result from self-organizing events. The cusp catastrophe model, which is one of the most widely used of the elementary seven models, is shown on the main Resources page.

Cellular automata. Cellular automata are one of the earliest forms of agent-based modeling wherein agents are depicted as cells on a field of graph paper. Each cell interacts with, and produces an effect upon adjacent cells according to some pre-programmed rules. The objective is to observe patterns of cell behaviors after the process has run for a sufficiently long time. Also see emergence, self-organization.
Chaos. Chaos describes the behavior of a system that appears random, but is actually produced by deep order underneath. Chaos can be characterized by simple deterministic equations. The hallmark of a system in chaos is sensitive dependence on initial conditions, which means that slight changes in starting places dramatically alter the dynamical system’s course. Chaotic systems are deterministic, in that current behavior is based precisely upon past states, even though future states are fundamentally unpredictable. Numerical sequences that are generated by chaotic equations are also bounded and non-repeating; both of these principles are matters of degree. The basin or outer rim of a chaotic attractor is a fractal pattern. Chaos has been identified in physiological, human social, and economic phenomena. 

Closed system. Also known as a Hamiltonian system, a closed system in one in which the entities inside the system have no interaction with entities outside the system. Closed systems are conservative of energy, unlike dissipative systems. For real-world systems, the designation of open or closed is more of a matter of degree. A system containing water, vapor, a sealed container, and a heat source would be closed. A loose social network where members of the network can join or leave regularly is relatively open.

Complexity theory. Complexity theory involves the study of nonlinear dynamical systems containing “order for free,” which means that no a priori order exists until its spontaneous emergence without importation from outside the system; also see self-organization. In complex systems, order emerges at a global level, often the outcome of many interactions following simple rules at local levels. In complex adaptive systems that characterize most life forms, complexity can structuralize as internal maps of the organism’s own behavior or internal states in relation to the external physical or social environment. When dynamical systems exist close to equilibrium, there is a minimal exchange of matter, energy or information across open borders, and system behavior is often simple and stable. By contrast, when dynamical systems exist in conditions far from equilibrium, high flows of matter, energy, or information across open borders lead to unstable and nonlinear behavior. Under extreme non-equilibrium conditions, system order can break down. Under optimal conditions, at the edge of chaos, nonlinear systems self-organize to higher complexity spontaneously and unpredictably, according to intrinsic dynamics. 

Complex system.  A system that has multiple parts that interact to produce results that cannot be explained by simply specifying the roles of the various parts. A complex adaptive system is a complex system that changes its internal structure to meet the demands that arise from places outside the system or from changes within the system.

Control parameter. In a nonlinear dynamical system a control parameter affects the behavior of the system in any of a number of ways, such as increasing the variability of a response, or triggering a discontinuous change or qualitative difference in the system’s state. It is akin to an “independent variable” in conventional research except that control parameters have more specific roles in the dynamics of a system than a simple additive effect. Also see order parameter.

Correlation dimension. A calculation for the fractal dimension that is usually applied to time series data. It is similar in principle to the Hausdoff dimension, except that it covers the time series with circles of fixed radii instead of boxes. The “correlation” aspect of the computation is based on the degree of similarity between one observation and others later on in the time series. The Grassberger-Procaccia algorithm for calculating a correlation is a widely-used computation for the correlation dimension, although its limitations when used with real data are now well known.

Coupled dynamics. Coupled dynamics occur when two dynamical systems become highly interdependent, and they as a single complex system. Coupled dynamics extend from primitive, neural and physiological levels to higher order psychological and social levels. Coupled linkages are one important way that emotional complexes, knowledge, personal history and culture become transmitted, both implicitly and explicitly. Coupled dynamics provide the engine for the neurobiology of attachment. 

Difference equation. A function specifying the change in a variable from one discrete point in time to another. Difference equations are discretized differential equations.

Differential equation. A function that specifies the rate of change in a continuous variable over changes in another variable. The other variable is usually time in nonlinear dynamical systems. Differential equations can be linear or nonlinear, although the nonlinear varieties are far more frequent and relevant to nonlinear dynamics. 

Dimension. See embedding dimension, Hausdorff dimension, correlation dimension, information dimension.

Dissipative systems. A system that is characterized by semi-permeable boundaries and which leaks energy into the environment. Dissipative symptoms were first thought to be symptomatic of a system that would eventually suffer from “heat death.” It is now known that dissipative systems self-organize to maintain their functionality. Also see closed system.

Dynamic system. A set of equations specifying how certain variables change over time. The equations specify how to determine (compute) the new values as a function of their current values and control parameters. The functions, when explicit, are either difference equations or differential equations. Dynamic systems may be stochastic or deterministic. In a stochastic system, new values come from a probability distribution. In a deterministic system, a single new value is associated with any current value.

Embedding dimension. Successive N-tuples of points in a time series are treated as points in N dimensional space. The points are said to reside in embedding dimensions of size N, for N = 1, 2, 3, 4 ... etc.

Emergence. Emergence is the hallmark of complex dynamical systems, by which novel and unexpected structure, pattern or process arises spontaneously in self-organizing systems. Emergence represents a “bottom-up” process of evolution and change, whereby complexity at a higher level of description arises from lower levels in nonlinear fashion out of a myriad of local interactions. With emergence, the global outcome cannot be predicted, even with a thorough understanding of constituent elements and local rules of interaction. In contrast to “top-down,” models of development and change, with linear chains of cause-effect, emergence arises out of multi-directional, circular, reciprocal feedback loops that operate in parallel across multiple size or time scales or levels of description. The concept of emergence pre-dates most of nonlinear dynamical systems theory. One of its earliest objectives was to explain how a social group was more than the result of actions of individuals.

Entropy. Entropy is a measure of unpredictability in a system as it changes state. In Shannon’s original conceptualization, information and entropy added up to maximum information, which was the maximum information that was needed to predict the changes in a system. In Prigogine’s revision of the concept, entropy and information were the same entity, because information was generated by a system in motion. Topological entropy, or Komolgorov-Sinai entropy, is the amount of information that is gained or lost as the system evolves, unfolds, or iterates over time.

Far from equilibrium. Under far from equilibrium conditions, a dynamical system exhibits the continual exchange of matter, energy and information across open boundaries. Close to equilibrium, dynamical systems maintain homeostasis. Here they may fluctuate to some degree, but are unlikely to exhibit large-scale change. By contrast, far from equilibrium, dynamical systems operate under pre-requisite conditions to self-organize out of chaotic bases into higher levels of complexity. When water streams in conditions close to equilibrium, it maintains a smooth, laminar flow. When existing in conditions far from equilibrium, water becomes turbulent, and its molecules self-organize into a complex series of vortexes that exhibit fractal structure.

Fractals. Fractals are defined technically as geometrical structures displaying fractional dimensionality and more loosely as complex shapes displaying detail on multiple size or time scales. Fractal geometry is sometimes called the “geometry of nature,” because of its ability to model irregular, recursive, rough, and discontinuous patterns that are characteristic of both organic and inorganic processes. The hallmark of fractals is self-similarity, meaning that the pattern of the whole is repeated within its parts, either exactly or approximately. Fractals also display the related property of scale-invariance, by which pattern holds across different spatial or temporal scales. Fractals can manifest either as spatial structures, such as those observed in the shape of plants or branching patterns in lungs, or can appear statistically as power laws or mathematical order observed in time series data, particularly when chaotic processes are involved. 

Fractal dimension. A measure of a geometric object that can take on fractional values. Fractal dimension is often used as a measure of how fast length, area, or volume increases with decrease in scale, or as a measure of complexity of a system. Also see Hausdorff dimension and correlation dimension.

General linear model. See linear function.

Genetic algorithm. A computer simulation technique that emulates genetic processes as agents interact and “reproduce” according to known or hypothetical rules of genetics. These techniques were first introduced to study genetic processes literally, but have evolved into a more general class of evolutionary computations that are useful for developing scenarios for the future of systems.

Hausdorff dimension. A measure of a geometric object that can take on fractional values; see fractal dimension). It is also known as the box-counting dimension because it relies on the concept of placing boxes of equal size over an irregular geometric shape and counting the number of boxes that are required to cover the target object.

Hysteresis. A shift between two or more stable states that is usually rapid, repeated and reversible. Hysteresis effects are signatures of catastrophe models and typically occur around a bifurcation manifold.

Information. Information is what is needed to predict the state of a system, given that the system can take on multiple states, which are usually characterized as discrete or categorical. Also see entropy.

Information dimension. A calculation of the fractal dimension that is based on Shannon’s information function.

Initial condition. The starting point of a dynamic system. See sensitive dependence on initial conditions.

Iteration. Iteration can be understood computationally as a technique of beginning with X1 run through a function of X to produce X2. X2 is then run through a function of f(X), to produce X3, and so on. Iteration is a quality of nonlinear dynamical systems, by which their future states are deterministically linked with the history of all past states. Through iteration, system output at each moment becomes input for processing the next moment. Within neurobiological structures iteration of underlying algorithms is important for understanding system dynamics precisely as they move, change, evolve or devolve over time. Iteration contrasts with the concept of repetition, where the dynamics of future states can operate independent of past states.  Iterative structures are inherent in a wide range of nonlinear dynamical processes.    

Iterative function. A function used to calculate the new state of a dynamic system.

Iterative system. A system in which one or more functions are iterated to define the system.

Limit cycle. An attractor that is periodic in time, that is, that cycles periodically through an ordered sequence of states. For continuously-valued variables it is often characterized by sinusoidal functions.

Linear function. The equation of a straight line. A linear equation is of the form y = mx + b, in which y varies "linearly" with x. In this equation, m determines the slope of the line and b reflects the y-intercept, which is the value that y obtains when x equals zero. Note that the proportionality between x and y is consistent for all values of x, unlike situations involving nonlinear functions. Linear functions can be expanded or complexified as weighted combinations of two or more variables xi, e.g., y = 0 + 1x1 + 2x2 +… nxn, which is the common form of multiple linear regression, also known as the general linear model.

Logistic difference equation. See logistic map. 

Logistic map. xt+1 = rxn[1- xn]. A concave-down parabolic function that 0<x<1) can produce a time series of fixed points, oscillations, oscillations within oscillations, or chaos, depending on the value of the control parameter r (r > 0). The logistic map diagram is shown on the main Resources page. The logistic map has a substantial history of use for ecological and population dynamics. It is also an easy means of generating chaotic data when r > 4. 

Lorenz attractor. A butterfly-shaped strange attractor. It came from a meteorological model developed by Edward Lorenz with three equations and three variables. It was one of the first strange attractors studied.

Lyapunov exponent. (Liapunov number). The value of an exponent is a coefficient of time that reflects the rate of departure of dynamic orbits. It is a measure of sensitivity to initial conditions and a measure of turbulence in a dynamical system. 

Nonlinear dynamical systems theory. A dynamical system is any system that moves and changes over time. Nonlinear dynamics is the study of dynamical systems whose behavioral output is disproportionate to their input. Relevant concepts include: attractors, bifurcations, chaos, fractals, self-organization, and sensitive dependence on initial conditions. When dynamical systems exist in nonlinear states, small perturbations can carry the capability to trigger substantial changes in the system’s trajectory, or conversely, large perturbations can alter the system’s trajectory only slightly, if at all. When nonlinearity characterizes a dynamical system, its output may be multiplicative or exponential, may be subject to threshold effects, hysteresis, or sensitive to amplifying or damping effects from other system components.

Nonlinear function. Any of a wide variety of relationships between two or more variables such that the dependent measure y is not proportional to the input variable x, e.g. y = x2, y = sin(x), y = ex. Note that systems structured as y = 0 + 1x + 2x2 +… nxn are sometimes regarded as “linear” because it is possible to substitute a nonlinear component for one or more linear components in the general linear model. 
Open system. A system that has a great deal of information transmission across its boundaries. It is the opposite of a closed system. Open systems have a tendency to be dissipative systems as well.

Orbit (trajectory). A sequence of positions (path) of a system in its phase space.

Order parameter. A variable that exhibits nonlinear behavior. Order parameters are closely akin to dependent measures in conventional research. One important distinction, however, is that order parameters can be studied in their own right with or without the involvement of control parameters. Another is that when systems involve two or more order parameters, the two order parameters influence each other to some extent.

Period-doubling. The change in dynamics in which an N-point attractor is replaced by a 2N-point attractor.

Phase portrait. The collection of all trajectories from all possible starting points in the phase space of a dynamic system. It is often used to visualize a chaotic or other deterministic process in the data. 

Phase space. An abstract space used to represent the behavior of a system. Its dimensions are the variables of the system. Thus a point in the phase space defines a potential state of the system. The points actually achieved by a system depend on its iterative function and initial condition (starting point). It is graphed showing a subsequent X as a function of X at each point in time, i.e., a plot of position versus velocity. Also see state space.

Power laws. A power law is a statistical distribution where Frequency(X) = aXb; in dynamical processes b < 0. Power laws, or 1/f b distributions, are ubiquitous in nature, representing self-organized criticality, or the broad tendency of nature to self-organize asymmetrically at the complex edge of chaos. The distribution of a power law reveals many small-scale events, a medium number of mid-size events, and relatively few large-scale events. When a power law is present, there exists a nonlinear, log-log relationship between the frequency of X (f) and the value of X. For example, the ratio of frequency versus magnitude in earthquakes as measured by the Richter scale reveals a power law, as does the ratio between word rank and frequency in English as well as most other natural languages, which is known in linguistics as Zipf’s law. Sometimes the exponent associated with f is an integer, as is the case with earthquakes. Sometimes the exponent is a fraction, representing fractal processes in nature, such as white, pink, and brown noises, whose distributions are uncorrelated, partially correlated, and highly correlated, respectively.

Recursive process For our purposes, "recursive" and "iterative" are synonyms. Thus recursive processes are iterative processes, and recursive functions are iterative functions.

Repellors. One type of limit point. A point in phase space that a system moves away from.

Return map. Plot of a time series values Xt vs. X t+1. 

Saddle point. A point, usually in three-space, that both attracts and repels, attracting in one dimension and repelling to another.

Self-similarity. An infinite nesting of structure on all scales. Strict self- similarity refers to a characteristic of a form exhibited when a substructure resembles a superstructure in the same form.

Self-organization. Self-organization refers to the emergence of novelty, new levels of integration, and higher levels of order or complexity within a dynamical system. Self-organization arises spontaneously, often unpredictably from nonlinear interactions among simple system components. The concept of self-organization applies to multiple levels of neural, psychological, social, cultural and historical description.

Self-organized criticality. A critical point in the life of a system where it suddenly self-organizes into a new structure. An illustrative example is where a sand pile suddenly avalanches and becomes a distribution of smaller piles of various sizes. See power law.

Sensitive dependence on initial conditions. Sensitive dependence means that small differences in starting conditions, as well as tiny perturbations to a system’s trajectory, can carry the capacity to greatly alter its future course. Sensitive dependence on initial conditions is the hallmark of chaotic states and nonlinear systems as they near transition points. Informally, the quality of sensitive dependence, known as the “butterfly effect,” means an event as seemingly trivial as a butterfly flapping its wings can, at critical times, completely alter how a weather system develops. Due to this quality, it becomes extremely difficult to predict the precise trajectory of chaotic states and nonlinear systems over the long range. 

State. A point in state space designating the current location (status) of a dynamic system.

State space. An abstract space used to represent the behavior of a system. Its dimensions are the variables of the system. Thus a point in the phase space defines a potential state of the system. For a one-dimensional system the graphic plot of a state space is the same as a return map. For systems involving two or more dimensions, however, each point on the plot is a pair of points X, Y… for the two variables at each point in time, or sometimes X versus Y.

Strange attractor. N-point attractor in which N equals infinity. Usually (perhaps always) self-similar in form. Trajectories within the strange attractor are sensitive to initial conditions, and are often chaotic, although chaos is not guaranteed.

Time series. A set of measures of behavior over time.

Torus. An attractor consisting of N independent oscillations. Plotted in phase space, a 2-oscillation torus resembles a donut.

Trajectory (orbit). A sequence of positions (path) of a system in its phase space. The path from its starting point (initial condition) to and within its attractor.

Vector. A two-valued measure associated with a point in the phase space of a dynamic system. Its direction shows where the system is headed from the current point, and its length indicates velocity.

Vector field. The set of all vectors in the phase space of a dynamic system. For a given continuous system, the vector field is specified by its set of differential equations
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