Does Shared Decision Making Affect People's Preference, Intent, and Adherence Regarding Colorectal Cancer Screening?

Masahito Jimbo, MD, PhD, MPH1

Ananda Sen, PhD^{1,4}
Melissa Plegue, MA¹
Sarah Hawley, PhD, MPH²
Karen Kelly-Blake, PhD³
Mary Rapai, MA¹
Minling Zhang, BS⁵
Yuhong Zhang, BS¹
Mack T. Ruffin IV, MD, MPH⁶

- 1: Department of Family Medicine, University of Michigan, Ann Arbor, MI
- 2: Department of Medicine, University of Michigan, Ann Arbor, MI
- 3: Center for Ethics and Humanities in the Life Sciences, Michigan State University, East Lansing, MI
- 4: Department of Biostatistics, University of Michigan, Ann Arbor, MI
- 5: Kidney Epidemiology and Cost Center, University of Michigan, Ann Arbor, Michigan
- 6: Department of Family and Community Medicine, Penn State University Hershey Medical Center, Hershey, PA

Conflict of Interest

□ NONE

Shared Decision Making (SDM): Effect on Patient Sociocognitive Factors and Health Behavior

- □ Importance of SDM in clinical care and increasingly in health care policy
- ☐ SDM improves patients' overall satisfaction and their confidence in decisions that have been taken.
- □ However, the extent to which it might also positively affect patient-relevant, disease-related endpoints is a matter of debate (Shay/Lafata 2015).

Colorectal Cancer Screening (CRCS): Choice of Tests

- Recommended for all average-risk United States adults aged 50 to 75 years
- Several CRCS options are available, including stool blood test, flexible sigmoidoscopy, and colonoscopy.
- No strong evidence exists that favors one CRCS test over another in average-risk patients
- Organizations recommend that CRCS should be based on patient preference in order to optimize the CRCS rate. [USPSTF]

Patient Preference: Which CRCS Test?

Patient preference depends on demographic, social, and behavioral factors, and relates to test characteristics of efficacy, sensitivity, cost, complexity, and possible harm.

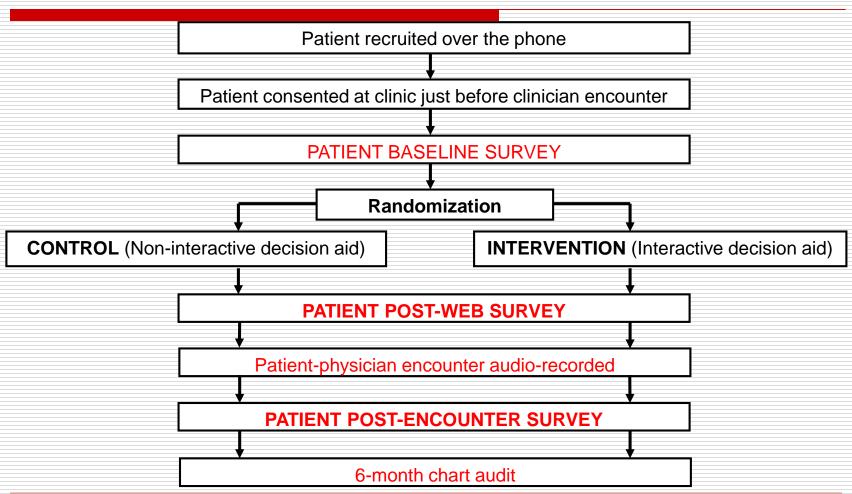
Our Study

- □ ∌ATES: Decision Aid to Technologically Enhance Shared Decision Making (R01CA152413)
 - Goal: Provide detailed understanding of how an interactive decision aid will impact the patient's decision making process, including SDM, and ultimately, CRCS adherence
 - 4 (+1.5) years: 4/1/2011-9/30/2016
 - ☐ Year 1: Preparation
 - ☐ Years 2 and 3 (4): Implementation
 - ☐ Year 4 (5): Evaluation
 - It keeps going...

Design

- 2-armed randomized controlled trial (RCT)
 - 585 patients total (original goal: 600)
 - Intervention Arm (n=284): ColoDATES Web, an interactive web-based decision aid
 - Control Arm (n=286): Non-interactive web-based decision aid
- Setting: 12 community and 3 academic family medicine or internal medicine practices in southeast Michigan (56 physicians)
- □ Patients: Adults aged 50 to 75 years
 - Not current on CRCS
 - Scheduled for a check-up or chronic care visit with their clinician

Analysis Plan


- Logistic regression and change score analyses were performed on patient survey, audio-record, and chart audit data.
- SDM was measured by OPTION-12, a validated instrument that measured physician performance of SDM during the patient-physician encounter.
- Main outcomes
 - Change in patient preference and intent as measured by patient survey immediately before and after the encounter
 - CRCS adherence determined by medical record documentation of CRCS 6 months after the visit

Baseline Demographic Data

Variable	Overall (n=549)
Age (years) - Mean(SD)	57.7 (6.9)
Race: number (%)	
Caucasian	298 (54.5)
African American	204 (37.3)
Other	45 (8.2)
No Answer (Missing)	2
Gender: number (%)	
Female	310 (56.5)
Current Health: number (%)	
Excellent	45 (8.2)
Very Good	166 (30.2)
Good	209 (38.1)
Fair	109 (19.9)
Poor	20 (3.6)
Prior Exposure to CRCS: number (%)	
Yes	302 (55.0)

Study Flow

OPTION Observing patient involvement @ March 2009

Date of Rating:	Practitioner:	
Rater Name:	Patient:	Age Sex
Clinician Code:	Consultation Type:	□ New □ Review
Consultation Number:	-	☐ Composite
Consultation Duration: (mnules seconds)	Another Person In The Room?	
Description of Index Problem:		•

1. The clinician <u>draws attention</u> to an identified problem as one that requires a decision making process.

- 0 = No attempt to draw attention to a need for a decision making process (there is no clarity about problems, or at least no clarity about the decisions to be taken about the problem or problems identified).
- 1 = Very brief or perfunctory attempts to draw attention to the need to embark on a decision making process.
- 2 = Baseline skill level: Clinician draws attention to a problem that requires a decision making process.
- 3 = Clinician puts emphasis on the decision making process required.
- 4 = The skill is exhibited to a high standard (e.g. supplementary explanations and evidence of patient recognizing the need to engage in the process of decision making).

2. The clinician states that there is more than one way to deal with the identified problem ('equipoise').

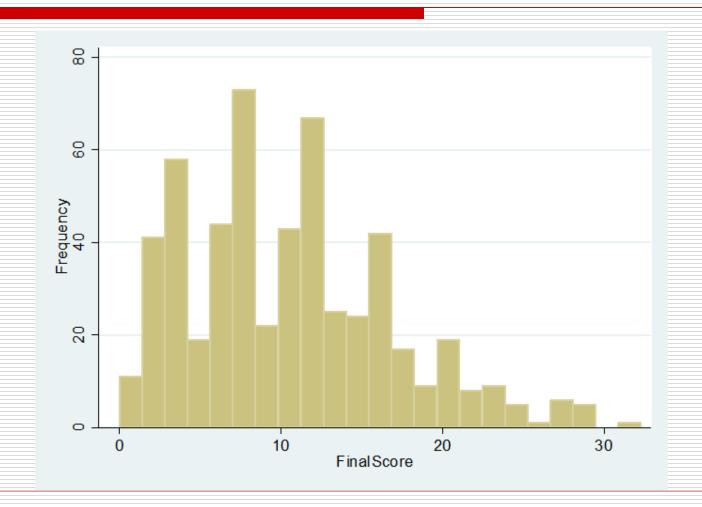
- 0 = The clinician does not state that there is more than one way of managing problems.
- 1 = Perfunctory attempt to convey the existence of more than one option.
- 2 = Baseline skill level: Clinician conveys the sense that the options are valid and need to be considered in more depth.
- 3 = Explains 'equipoise' in more detail and that options have pros and cons that need to be considered.
- 4 = The clinician also explains 'why' choices are available (e.g. there is genuine professional uncertainty as to the 'best' way of managing the problem clinical equipoise): the skill is exhibited to a high standard.

3. The clinician <u>assesses patient's preferred approach</u> to receiving information to assist decision making (e.g. discussion in consultations, read printed material, assess graphical data, use videotapes or other media).

- 0 = The behaviour is not observed
- 1 = A minimal attempt is made to exhibit the behaviour.
- 2 = Baseline skill level: Clinician asks for patient's preferred method of receiving information.

OPTION-12

- 12 items, assessing physician performance, raw score of **0-4** each (total: 0-48) that is adjusted to 0-100 total score
 - Draws attention
 - Equipoise
 - Assess patient preference
 - Lists options
 - Explains pros and cons
 - Expectations
 - Concerns
 - Understood
 - Opportunities
 - Preferred level of involvement
 - Decision making
 - Review



So What Did We See?

- 549 total eligible patient-clinician transcripts
- Most items ranged from 0 to 2
- ☐ Mean of 10.6 (SD=6.2) out of 100, range of 0-32, most transcripts <20
 </p>

Distribution of Scores

There Was Association Between SDM and Increase in Intent

- Change score analysis where the original 5 point responses to the intent questions ("definitely will not do" to "definitely will do") were compared **prior to** and after encounter to see if there was any increase and how that might associate with SDM measured by OPTION-12
- □ The difference was taken and dichotomized into positive change in intent (difference>0) vs negative or no change (intent difference<0)</p>
- Of the 538 patients for which data was available, 196 (36.4%) had increased intent
- Increasing OPTION-12 scores were associated with higher odds of increasing intent (OR(SE)=1.03(0.02), p-value=0.051), adjusting for patient level factors and physician.

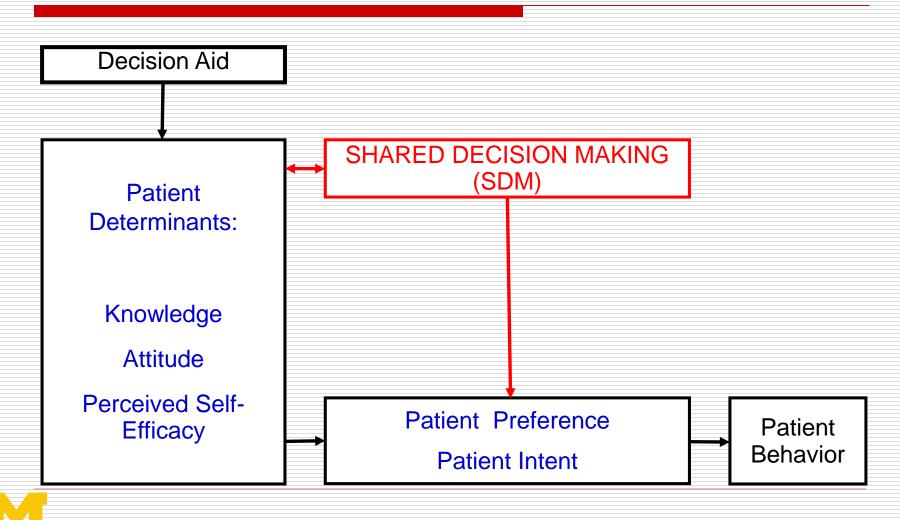
What About SDM and Preference?

Preference Coding	Post-Encounter:	Post-Encounter:	
	No Clear Preference	Clear Preference	
Post-Web:	23	60	
No Clear Preference			
Post-Web:	24	441	
Clear Preference	- ·		

- The majority of patients (n=441) had a preference prior to physician encounter and remained with a preference after encounter.
- There were 60 patients who had no preference prior but a clear preference after the encounter.

There Was Association Between Pre-Encounter Preference and SDM on Post-Encounter Preference

- ☐ Higher OPTION-12 scores associated with increased odds of clear postencounter test preference among those without a clear preference before the encounter: OR(SE)=1.16(0.06), p-value=0.007
- □ No significant association between OPTION-12 and post-encounter preference was found among those with a clear preference before the encounter: OR(SE)=0.98(0.03), p-value=0.478



How About SDM and CRCS?

- Adjusting for study arms and other variables found to be significant in previous model (race, current health, prior exposure, intent), OPTION-12 score was not significantly associated with CRC screening.
 - Lower in African Americans: OR 0.48 (0.28, 0.85), p=0.011
 - Significantly **higher in those with better** current health: OR 1.32 (1.05, 1.65), p=0.017
 - Age, gender not significant
 - Significantly higher in those with prior exposure: OR 1.82 (1.15, 2.88), p=0.011
 - Significantly **higher in those with greater intent**: OR 2.22 (1.10, 4.47), p=0.026

So, Our Conclusion...

Strength of Our Study

- Measured SDM's effect on both:
 - Sociocognitive variables
 - Intent
 - Preference clarification
 - Patient behavior
- Measured SDM both:
 - Subjectively (Degner: Control Preferences)
 - Objectively (Elwyn: OPTION-12)

What We Didn't Find

- There was no difference in SDM between those who underwent an interactive decision aid vs. non-interactive decision aid.
- We do not know whether a patient decision aid administered prior to the visit with a clinician improves SDM.
 - 5 small studies from Mayo Clinic showed decision aids administered during the visit improved SDM as assessed by OPTION-12.

Do Decision Aids Really Lead to Greater SDM?

- □ If the patient reached a clear preference and increased intent after reviewing the decision aid, does it need to be rehashed with the physician?
- How do we measure the combined effect of informed decision making (decision aid) and shared decision making (physician encounter)?

Other Questions to Ponder

- Does SDM need to be done by the physician?
- ☐ Is SDM the right way to measure patient-physician communication?
 - Just focuses on task
 - Does not incorporate relational and identity
 - What incorporates all three? Communication Quality Analysis
 - ☐ LJ Van Scoy, MD; Allison Gordon, PhD

Thanks to All Co-investigators, Consultants, Staff, and Practices

- Co-investigators
 - Mack Ruffin @Penn State U
 - Ananda Sen
 - Sarah Hawley
 - Karen Kelly-Blake @Michigan State U
 - Lawrence An
 - Victor Strecher
- Consultants
 - Glyn Elwyn @Dartmouth
 - Jennifer Elston-Lafata @UNC Chapel Hill
 - Margaret Holmes-Rovner @Michigan State U
 - Don Nease @University of Colorado
- The Great Lakes Research into Practice Network (GRIN)
 - Martha Boggs
 - Lee Green
 - Mike Klinkman
- Administrative Staff
 - Judy Connelly
 - Katie Grode
- National Cancer Institute folks
 - Wendy Nelson
 - Sarah Kobrin
 - Stephen Taplin

Research Staff

- Mary Rapai
- Kathleen Lawrence
- Lauren Schleicher
- Krystle Woods
- Michelle Thurston
- Nora Arato
- Missy Plegue
- Laurie Fortlage
- Hope Hooks
- Minling Zhang
- Yuhong Zhang
- Center for Health Communication Research
 - Ed Saunders
 - Michele Demers
 - Ian Tadashi Moore
 - Hsueh-Ling Chang
 - Holly Derry
 - Viji Ramaswami
- All the wonderful practices, clinicians, and staff who helped us out